Mendeleev Commun., 1996, 6(3), 103-104

Mendeleev Communications

Intermediate formation of a thio-1,4-benzoquinoid structure in the reactions of 2,5-di-*tert*-butyl-4-chlorosulfanylphenol

Egor E. Novikov,* Nataliya V. Chumachenko and Yurii A. Kopel'tsiv

'L'vivs'ka Politekhnika' State University, 290013 L'vov, Ukraine. Fax: +7 0322 27 1501; e-mail: yugin@avicena.med.lviv.ua

Some chemical properties of a noncondensed thio-1,4-benzoquinoid structure were experimentally studied for the first time.

The purpose of this work is to study the chemical properties of some noncondensed thio-1,4-benzoquinones. Compounds of this series are poorly understood because they are extremely unstable, and the data on them are restricted to that on nonsubstituted thio-1,4-benzoquinone isolated in an argon matrix at $10\,\mathrm{K}.^1$

matrix at 10 K.¹

It is known² that the introduction of *tert*-butyl groups at positions adjacent to the carbonyl group enhances the stability of quinoid compounds. Therefore, we attempted to obtain 2.6-di-*tert*-butyl-4-thioxocyclohexa-2.5-dien-1-one 2.

1,6-Elimination of hydrogen chloride from 2,6-di-*tert*-butyl-4-chlorosulfanylphenol 1 under the action of a base seems to be the mildest method for preparation of 2 (Scheme 1).

Compound **1** was obtained by chlorination of 3,5,3′,5′-tetra*tert*-butyl-4,4′-dihydroxydiphenyl disulfide by a known procedure.³ P. D. Stephen³ treated compound **1** with triethylamine and, after 72 h, isolated 1,1′-bis(3,5-di-*tert*-butylcyclohexa-2,5-dien-4-one-1-ylidene) **3** in 86% yield.

We have investigated time changes in the concentration of 3 ($\lambda=420.6$ nm) in this reaction by UV spectroscopy. It has been established that at 20 °C the reaction has ceased after less than 5 min. We suppose that the dehydrohalogenation of 1 results in the formation of 2, which then self-condenses. Similar reactions are known for thioketones. The intermediate formation of 2 was established on the basis of analysis of the products obtained by the 1,6-elimination of hydrogen chloride from 1 in the presence of intercepting agents such as butadiene, isoprene, 4-nitroaniline and malonodinitrile (Scheme 1).

In Diels–Alder reactions, thioketones are considerably more active as dienophiles than the corresponding carbonyl compounds.⁵ The treatment of **1** with triethylamine in the presence of butadiene at –10 °C results in the formation of 8,10-di-*tert*-butyl-1-thiaspiro[5.5]undeca-3,7,10-trien-9-one **4**. A similar reaction in the presence of isoprene results in the

formation of one isomer, 8,10-di-tert-butyl-3-methyl-1-thias-piro[5.5]undeca-3,7,10-trien-9-one **5**. The physicochemical constants of the colourless crystalline products **4** and **5** (recrystallized from methanol) were obtained. The position of the methyl group in **5** was determined on the basis of its 1 H NMR spectrum.

Thioketones condense with amines more easily than the corresponding ketones to give similar products.⁶ When 4-nitroaniline was used for the dehydrochlorination of 1 (DMF, -10 °C, 5 min, 85% yield), *N*-(4-nitrophenyl)-3,5-di-

Scheme 1 Reagents and conditions: i base; ii, Et_3N , $20\,^{\circ}C$; iii, Et_3N , butadiene or isoprene, $-10\,^{\circ}C$; iv, nitroaniline, DMF, $-10\,^{\circ}C$; v, malonodinitrile, NaOPrⁱ, PrⁱOH, $0\,^{\circ}C$.

tert-butyl-4-oxocyclohexa-2,5-dien-1-imine **6** described previously² was obtained. The high selectivity of the reaction makes it possible to assume that the intermediate formation of **2** is almost quantitative.

Knoevenagel condensation of thioketones usually occurs readily. The addition of 1 to an excess of malonodinitrile in propan-2-ol in the presence of sodium isopropylate (0 °C, 5 min, 78% yield) results in the formation of 2,6-di-*tert*-butyl-4-(tricyanovinyl)phenol 8. It is evident that the intermediate product is 4-(dicyanomethylene)-2,6-di-*tert*-butylcyclohexa-2,5-dien-1-one 7 which, according to the literature, condenses with malonodinitrile to form 8.

References

- H. Bock, S. Mohmand, T. Hirabayashi, G. Maier and H. P. Reisenauer, *Chem. Ber.*, 1983, **116**, 273.
- 2 Houben-Weyl, Metoden der organischen Chemie, Georg Thieme Verlag, Stuttgart, 1977, Bd. VII/3a, Teil 1, S. 832.
- 3 P. D. Stephen, J. Org. Chem., 1984, 49, 5260.
- 4 E. Campaigne, in *The Chemistry of the Carbonyl Group*, ed. S. Patai, Wiley-Interscience, New York, 1966, ch. 17.
- 5 W. J. Middleton, J. Org. Chem., 1965, 30, 1390.
- 6 R. Mayer, J. Morgenstern and J. Fabian, *Angew. Chem.*, 1964, 76, 157.
- 7 R. Couturier, D. Paquer and A. Vibet, Bull. Soc. Chim. Fr., 1975, 1670.

Received: Moscow, 27th November 1995 Cambridge, 6th February 1996; Com. 5/07959D

^{† 8,10-}di-*tert*-butyl-1-thiaspiro[5.5]undeca-3,7,10-trien-9-one **4**. (Yield 80%); mp 115–117 °C; v/cm^{-1} 2960 (C–H), 1656 (C=O); ¹H NMR δ (ppm) 1.237 s (18 H), 2.380 m (2 H), 3.333 m (2 H), 5.890 m (1 H), 5.990 m (1 H), 6.589 s (1 H), 6.594 s (1 H).

^{8,10-}di-*tert*-3-methyl-1-thiaspiro[5.5]undeca-3,7,10-trien-9-one **5**. (Yield 75%); mp 120 °C; ν /cm⁻¹ 2960 (C–H), 1653 (C=O); ¹H NMR δ (ppm) 1.233 s (18 H), 1.881 s (3 H), 2.360 m (2 H), 3.195 s (2 H), 5.578 m (1 H), 6.570 s (1 H), 6.578 s (1 H).